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THE PALEY-WIENER CRITERION ?OR RELAXATION FUNCTIONS

It is traditionalI1 5 to discuss the residual part of relaxing quantities

in terms of exponential decay viz.

exp(-t/r) (1)
.. 6-38

where r is the "relaxation time" or a superposition of exponential decay

terms with a distribution of T. In fact, deviations from this exponential
6-74

behavior are usually observed in experimental measurements. Other functional

forms, namely,

exp(-a(t/ s) b), a>O, O<b<l (2a)

and

(t/T S)- , U>0 (2b)

have proved to be widely applicable in the description of a large variety of

relaxation phenomena in condensed matter physics. 21,39-74 Here T is a charac-

teristic time in the system. There have been many attempts 3 -5 5 to understand

the latter dependences in terms of a distribution of relaxation times. Alterna-

tively, the functional forms (2a,b) have been viewed as fundamental in themselves
56-74

and based on mechanistic origins. The purpose of the present paper is to
75

employ the Paley-Wiener theorem on Fourier transforms together with physical

requirements that have to be satisfied by any relaxation process to discriminate

between the two viewpoints.

There is extensive literature7 6 "8 1 on the nature of the decay of unstable

states that can be utilized in the present context. A clear exposition of
76 80

this decay may be found in the papers of Khalfin and Chui et al. The

formalism developed by Chui et al. is utilized to provide a description for

relaxation processes.

LetA be the Hilbert space formed by the totality of the relaxing states

and those which are stable. The time evolution of this total system is then

described by the evolution operator2U(t)=exp(-iHt), where H is the self-adjoint

Hamiltonian operator of the system. (Units with 11=1 are used in this paper.)

For the sake of simplicity, it is assumed that there is only one relaxing

state represented by the vector IR> off(. The state IR> is associated with the

Manuscript submitted January 5, 1982.

Mac



continuous spectrum of X( and is orthogonal to all bound stationary states of

the Hamiltonian. It is assumed that the Hamiltonian H has no singular continuous

spectrum. If FE denotes the spectral projections of H,

H = f edFf = f CIC><&Id, (3)

then the function <RIF IR> is absolutely continuous, and its derivative

d L <RIF IR> = <RIE><&IR> (4)de C
can be interpreted as the energy distribution of the state IR>. In other

words, the integral J +AE p(E)d& is the probability that the energy of the

state IR> lies in the interval (E,E+AE). The function p(e) has the following

properties:

(i) p() 0;

(ii) f p(e)d& = 1 corresponding to the normalization condition, <RIR>=I;

and

(iii) p(s) = 0 for e outside the spectrum of H. In order that the system

have a stable ground state, the spectrum of H must have a finite lower bound.

Therefore p(e) is semibounded.

The residual part of a relaxing quantity, Q(t), at an instant t for the

relaxing state IR> is

Q(t) r1<Rlexp(-itH)IR>1 2  (5)

The residual relaxing amplitude

c(t) = <Rlexp(-itH)IR> (6)

may be seen to be the Fourier transform of the energy distribution function

p(e),

c(t) = f exp(-iet) p(e) d& (7)

The Paley-Wiener theorem 75  turns out to be the touchstone for the

determination of the bounds on the long time behavior of relaxation processes.

This theorem, stated in the present context is: the necessary and sufficient

* conditions that p(e), the Fourier transform of c(t) given by Eqn. (6) defined

in - <t<w, vanishes below some value of E, say zero (i.e. p(&) is semibounded
4

*in the e-variable) are
t2

(i) f. Ic(t)I 2dt < c (square integrability of c(t) ) (8a)

and

(ii) n dt < o (8b)
l~t2



These conditions imply that for (t/Ts) *+w,

Ic(t)l 2 - exp(-a(t/T ) b), a>O, O<b<1 (9)

Here T is a characteristic time so as to make a dimensionless. It should bes
noted that both the forms (2a,b) satisfy this inequality whereas the exponential

form (1) does not. Thus the two cases, Eqn. (1) and (2), are mutually exclusive.

The case b=1 corresponds to a physically unrealistic, unbounded p(e) a

at ((a/T S) 2+S2 ) , and therefore violates the conditions of the Paley-Wiener
theorem. Since a single exponential form is unphysical, a superposition of them

is also unphysical. Hence the idea of superposition of exponentially decaying

functions must also be ruled out as a viable description of relaxation phenomena.

The exclusion of b=O in Eq. (2a) follows from the fact that the corresponding

c(t) would violate the condition of square integrability, Eqn (8a), which is
2also physically untenable since, then Q(t) cannot then be proportional to Ic(t)I

However when

Ic(t)I 2 5 (t/Ts)'U with a>l for t/Ts _ 9 , (10)

the requirements of the Paley-Wiener theorem are again met. It is remarkable

that both the Paley-Wiener limiting form, Eqn (2a), and the simple inverse

power decay, Eqn (2b) have been repeatedly found to govern many different

relaxation processes in condensed matter physics. Both of these have also

been predicted from microscopic models.
5 5 74

Since tc(t)i 2 is monotonic for large t/ s, it follows from Eqs. (5) and

(9) that,
dQ x d IC(t)l2b1 2 O~~) (1

dt dt <= a (b/ ss ) (t/Ts)b1 1 t/ s

The effective transition rate W(t) has a bound

W(t) a (bl s ) (t/TS) b-1 , (0<b<l) .(12

Thus W(t) has an essential dependence on t. The impact of time dependent
82

transition rates in relaxation processes has recently been discussed elsewhere.

The limit of b=l would have led to a constant transition rate, as is the

familiar result for an exponential decay. As noted above this case was ruled

out so that the transition rate must be a function of time and must have the

bound given by Eqn. (12).

= 3



Eqn. (12) may be extended to include the case where b=O by the following

straightforward procedure wherein ab -+ a as b-O such that a is nonzero. Then

W(t) at -1  (13)

This corresponds to the case described by Eqn. (10). It is interesting to

note that Eqs. (9,12,13) provide a hierarchy of bounds for a relaxing quantity

and their corresponding transition rates.

The fact that the effective transition rate has an essential dependence

on time shows that it is not compatible with the traditional derivation of
83

constant transition rates by means of the Fermi golden rule. In fact the

breakdown of the Fermi golden rule has been very often noted in the

literature.8 4 -8 8 The familiar expression for the transition rate 8 3 is a good

approximation for long times.t>>(AE) where AE is the energy difference

between the two states between which the transition is taking place. The

explicit examples of the breakdown of this are in Bremstrahlung in Quantum

Electrodynamics and the X-ray edge problem in solid state physics. In the

relaxation regime, such characteristic energy differences may approach zero.

This indicates the breakdown of the approximation in the derivation of the

constant transition rate. In this situation, one must carry out a more careful

calculation which leads to a time dependent transition rate as discussed

above.

The occurrence of apparent constant transition rates for the "Elementary

Excitations"'8 9 commonly observed spectroscopically in condensed matter viz.

neutron, Raman, microwave, far infrared, infrared, visible, ultraviolet, X-ray

etc., may be understood to be consistent with the Paley-Wiener theorem if b is

taken to approach unity but never quite attain it. Such cases probe either

the discrete states or continuum states of the many particle Hamiltonian H

with typical energies in the range -1010 Hz such as electrons, phonons, magnons,

etc., and the approximation tAE>>1 holds good. For relaxation phenomena, b

rarely approaches unity. What are involved in the low frequency relaxation

processes are low frequency excitations of the system below, say 10 Hz. It

is clear that an experimental effort should be made to observe these excitations
90

directly. In fact they may have already been observed in recent experiments.

In general, the effect of these excitations should occur in any of a number of

long tail transient spectroscopic observations made possible by modern electronic

advances.
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